- EU Law: Dominant Undertakings & EU Four Freedoms – Legal Implications and Market Impact
- BTEC Level 3 Unit 19 Analogue Electronic Devices and Circuits, Assignment 2
- OTHM Level 5 Unit 2 T/650/1139 Managing the Safeguarding and Protection of Vulnerable Individuals
- Legal Analysis of Negligence Claim Against SamsTech for AI Chatbot Errors
- FINA 1007 Research Methods: Assessment Guide & FAQs
- Mathematical Methods in Physics Assignment Question
- Unit 5048 J/650/2990 Sensors and Automation BTEC Level 5
- Transport for London (TfL) Cycle Data Analysis Project – Programming & Data Science
- Sport Coaching Portfolio: Safe, Ethical, and Effective Practices – Assessment 2
- K/507/1406 HSC CM1 Unit 1 Equality, diversity and rights in health and social care, NCFE CACHE Level 3
- MS420/MS508 Advancing Sustainable Development Goals (SDGs) through Business Practices
- C1808 Unit 500 Understanding Leadership and Management in Adult Care – Theories, Styles & Best Practices
- Level 5 Leadership and Management in Adult Care Unit 17, Unit 18 & Unit 16
- Donald Trump’s Statement on South Africa: Economic and Health Impacts
- Level 3 Certificate in Assessing Vocational Achievement (CAVA)
- H/615/1488 Unit 4014: Production Engineering for Manufacture, BTEC Level 4
- CIPD Level 7CO02 People Management: Strategy, Engagement & Technology
- Unit 6: HND Construction Management – Architectural Design and CAD Standards
- Unconscious Bias and Equal Opportunities in the Workplace
- Understand Safeguarding: Sources, Whistleblowing, Accountability & Information Sharing
A lab scale 2L bioreactor operates at a volumetric productivity of 4 g L-1 h1 and is integrated with a cylindrical 400 mL separator: Chemical Engineering, Assignment, UCL, UK
University | University College London (UCL) |
Subject | Chemical Engineering |
Questions
1. A lab scale 2L bioreactor operates at a volumetric productivity of 4 g L-1 h1 and is integrated with a cylindrical 400 mL separator (Figure 1) with an L/D ratio = 4. The residence time in the separator is 16 min. The system described is characterised by Re = 105. The fermentation broth is characterised by μa = 0.25 Pa.s, p = 1050 kg m23.
Do You Need Assignment of This Question
a) Calculate the current length and diameter of the separator in operation.
b) If residence time is reduced to 8min will there be an interference on settling?
2. Propose an approach for scaling up the lab scale separator described above for a bioreactor volume of 10 m3, operating at the same volumetric productivity and a maximum residence time of 16 min (see Figure 1).
- Discuss your considerations for the basis of performing the scale up design.
- State any relevant parameters for design and / or verification.
- Detail any further measurements which would be needed to support the scale up design.
3. Propose a downstream procedure to ensure that the final product, taken from the separator and having the composition shown in Table 1, meets the specifications given in Table 2 so it is suitable to sale to customers. Aim to provide a process that can be applied industrially for as low a price as possible. State any assumptions and trade-offs/compromises in the design.
Buy Answer of This Assessment & Raise Your Grades
Are You Looking for Answer of This Assignment or Essay
Are you struggling with your Chemical Engineering assignment? Our Assignment Help Company in the UK is here to make things easier for you. If you need someone to do your assignment for you, or engineering assignment writing help online, we’ve got you covered. UK students can pay our expert to get the professional support they need to excel in their courses.
