- D/618/7406 Unit 5: Challenges of IT Security in Modern Organizations – Risks, Solutions & Best Practices
- HSC Level 2/3 Unit 012 Assignment: Care Worker Responsibilities and Ways of Working
- CIPD Level 5HR03 Assignment: Understanding Reward Approaches and Their Impact on Performance and Contribution
- CIPD level 5HR02 Assignment: Talent Management and Workforce Planning Unit Guide
- Level 3 D/615/3823 Assignment: Regulation, Protection, and Collaborative Practice in Health and Social Care
- PGM216D Assignment: Bicycle Store Sales Management Application
- MATH6033 Assignment: Epidemiological Investigation of Cardiovascular Health and Tea Consumption Risks
- EH6147 Assingment: Stakeholder Analysis for Quality Improvement in Hand Hygiene Compliance
- Assignment: Investigation of Solution Concentration Through Standard Preparation, Titration, and Colorimetry Techniques
- MATH6033 Assignment: Cardiovascular Risk and Tea Drinking: Epidemiological Analyses
- CIPD level 3 3CO03 Assignment: Core behaviours for people professionals
- DAC4B1: Personal development in adult care settings
- Unit 19 Research Project Assignment 1: Impact of Corporate Social Responsibility on Business Success & Community Wellness
- EG5022 Assignment: Georeferencing and Accuracy Assessment of a Quarry 3D Model Using Photogrammetric GCPs
- Assignment: Financial Performance and Strategic Analysis of a UK Listed Company: A CORE Evaluation and Reflective Review
- 5CNMN002W Assignment: Advanced measurement- Major measurement taking off
- K/650/2298 Level 3 Understanding Roles, Responsibilities, and Effective Partnerships in Health and Social Care
- Understanding Information and Knowledge Management in the Workplace: A Briefing for HR Professionals
- HRM7010D Strategic Use of People Analytics in Enhancing Organisational Value and Agility
- TOWN1060 Urban Planning in the UK History Sustainable Design and Future City Development
CIS4000: control system for the Vertical Farming Water System The control algorithm is implemented on a MicroController Unit: Computational Thinking Assignment UK
The above figure shows a control system for the Vertical Farming Water System. The control algorithm is implemented on a MicroController Unit (MCU) as follows:
The initial state is: the Water Reservoir is Empty, the Nutrient Container is not empty only with essential nutrients.
- The Valve can be open only if one of the following conditions is true:
– Tank 1 (Water Reservoir) is not full,
– Tank 2 (Nutrient Container) is empty.
- The Tank 1 (Water Reservoir) passes from the state full to the state empty exactly after 10 minute the refill (T1 is the time since the last refilling).
- The Tank 2 (Nutrient Container) passes from the state full to the state normal exactly after 24 hours the refill (T2 is the time since the last refilling).
For keeping the level of the two Tanks (Water Reservoir or Nutrient Container) in normal conditions, propose a strategy in which the Water Refill System avoid that the tanks are empty (exception the first filling stage of Tank 1 Water Reservoir).
Hypothesis:
1) Refilling time for the Tank 1 Water Reservoir TR1=0.2*T1,
2) Refilling time for the Tank 2 Nutrient Container: if Tank 1 Water Reservoir is Full and Tank 2 Nutrient Container is not Full, then TR2=20*T1.
The above figure shows a control system for the Vertical Farming Water System. The control algorithm is implemented on a MicroController Unit (MCU) as following:
The initial state is: the Water Reservoir is Empty, the Nutrient Container is not empty only with essential nutrients.
• The Valve can be open only if one of the following conditions is true:
– Tank 1 (Water Reservoir) is not full,
– Tank 2 (Nutrient Container) is empty.
• The Tank 1 (Water Reservoir) passes from the state full to the state empty exactly after 10 minute the refill (T1 is the time since the last refilling).
• The Tank 2 (Nutrient Container) passes from the state full to the state normal exactly after 24 hours the refill (T2 is the time since the last refilling).
For keeping the level of the two Tanks (Water Reservoir or Nutrient Container) in normal conditions, propose a strategy in which the Water Refill System avoid that the tanks are empty (exception the first filling stage of Tank 1 Water Reservoir).
Hypothesis:
1) Refilling time for the Tank 1 Water Reservoir TR1=0.2*T1,
2) Refilling time for the Tank 2 Nutrient Container: if Tank 1 Water Reservoir is Full and Tank 2 Nutrient Container is not Full, then TR2=20*T1.
For emergency purpose,
– If both Tanks Water Reservoir Empty an Nutrient Container are marking Empty, then the MCU must leave what it does and for a period of 10 minutes:
– turn OFF both Water Pump 1 and Water Pump 2
– 20 sec toggle of the buzzer
– send an alarm message to the screen as “Emergency: Water Reservoir Empty”.
– after finishing the 10 minutes, it will return to its normal operation.
– a push button is connected to MCU. As soon as the operator press this button, the MCU must leave what it does and for a period of 4 minutes:
– turn OFF both Water Pump 1 and Water Pump 2.
– 1 sec toggle of the buzzer
– send an alarm message to the screen as” Emergency: Manual Stop”.
– after finishing the 4 minutes, it will return to its normal operation.
This assessment consists of four parts:
1) Apply the constituent parts of Computational Thinking and discuss the results of each.
2) Express the algorithm used in the solution using a flowchart.
3) Express the algorithm using pseudocode.
4) Implement the solution in Python or any programming language you prefer (Bonus).
Buy Answer of This Assessment & Raise Your Grades
If you are a scholar of engineering and want to grow your rank in your CIS4000: Computational Thinking homework task? then don’t worry Students Assignment Help UK has a team of trustworthy writers who have in-depth knowledge to prepare a customized solution for engineering assignments at the most reasonable price.
