- OTHM Level 5: J/650/1143 Research Methods in Health and Social Care
- Feasibility Study for Night Moves: Event Logistics at Finsbury Park, Assignment 2
- EU Law: Dominant Undertakings & EU Four Freedoms – Legal Implications and Market Impact
- BTEC Level 3 Unit 19 Analogue Electronic Devices and Circuits, Assignment 2
- OTHM Level 5 Unit 2 T/650/1139 Managing the Safeguarding and Protection of Vulnerable Individuals
- Legal Analysis of Negligence Claim Against SamsTech for AI Chatbot Errors
- FINA 1007 Research Methods: Assessment Guide & FAQs
- Mathematical Methods in Physics Assignment Question
- Unit 5048 J/650/2990 Sensors and Automation BTEC Level 5
- Transport for London (TfL) Cycle Data Analysis Project – Programming & Data Science
- Sport Coaching Portfolio: Safe, Ethical, and Effective Practices – Assessment 2
- K/507/1406 HSC CM1 Unit 1 Equality, diversity and rights in health and social care, NCFE CACHE Level 3
- MS420/MS508 Advancing Sustainable Development Goals (SDGs) through Business Practices
- C1808 Unit 500 Understanding Leadership and Management in Adult Care – Theories, Styles & Best Practices
- Level 5 Leadership and Management in Adult Care Unit 17, Unit 18 & Unit 16
- Donald Trump’s Statement on South Africa: Economic and Health Impacts
- Level 3 Certificate in Assessing Vocational Achievement (CAVA)
- H/615/1488 Unit 4014: Production Engineering for Manufacture, BTEC Level 4
- CIPD Level 7CO02 People Management: Strategy, Engagement & Technology
- Unit 6: HND Construction Management – Architectural Design and CAD Standards
MAST4001: Explain two different methods to solve a quadratic equation and what is meant by a real root: Algebraic Methods Assignment, UOK, UK
University | University of kent (UOK) |
Subject | MAST4001: Algebraic Methods |
Questions
a) Explain two different methods to solve a quadratic equation and what is meant by a real root. For each, describe an instance where it would be appropriate to use this method and give an example calculation.
b) Define the discriminant (sometimes known as determinant) of a quadratic equation and, using your own words, explain how it can be used to determine the number of solutions to the equation. Show example calculations to where one, two, or no real roots are found. Use hand-drawn or software-generated graphs to show the roots of the quadratic and indicate which roots are real.
c) Explain in your own words how to determine whether a geometric series will:
- converge
- diverge
- oscillate Define any algebraic variables you use.
d) Give an example of each type of series and carry out an example calculation to show that it converges, diverges, or oscillates.
You can either print out the document and answer on the sheet, or answer on separate paper. Once you’ve finished, either scan or clearly photograph your answers to upload them to your assignment.
1
2
a) Express x² + 4x – 7 in the form (x + p)² – q, where p and q are integers.
b) Hence, or otherwise, find the coordinates of the minimum point of the curve y = x² + 4x – 7.
3. The quadratic equation x² + (3k + 1)x + (4 – 9k), where k is constant, has repeated roots.
a) Show that 9k² + 42k – 15 = 0.
b) Hence find the possible values of k.
4.
a) Find the binomial expansion of (2 + 3x)5, simplifying the terms.
b) Hence find the binomial expansion of (2 + 3x)5 – (2 – 3x)5
5.
a) Evaluate and simplify the following logarithm to find x 2logb 5 + ½ log 9 − log 3 = logo x
c) The formula for the amount of energy E (in joules) released by an earthquake is E = (1.74 × 1019 × 101.44M) where M is the magnitude of the earthquake on the Richter scale.
i. The Newcastle earthquake in 1989 had a magnitude of 5 on the Richter scale. How many joules were released?
ii. In an earthquake in San Francisco in the 1900s the amount of energy released was double that of the Newcastle earthquake. What was its Richter magnitude?
6.
The first term of an infinite geometric series is 96. The common ratio of the series is 0.4.
a) Find the third term of the series.
b) Find the sum to infinity of the series.
7.
An arithmetic series has first term a and common difference d. The sum of the first ten terms of the series is 460.
a) Show that 2a + 9d = 92.
b) Given also that the 25th term of the sequence is 241, find the value of d.
Buy Answer of This Assessment & Raise Your Grades
Students Assignment Help UK offers the best Online Assignment Help to college students who wish to score top grades in their MAST4001: Algebraic Methods assignment. Our team of subject-oriented and highly qualified writers promises to deliver the best quality solution on engineering assignments at a discounted price.
